Simple Wiring to Connect CJ1M-CPU22/23 and Servomotor

For connections other than those involving Servo Drivers and Servomotors, wire to terminal blocks using an XW2Z-a■K Connecting Cable and
an XW2D-40G6 or XW2B-40G5/4 Connector Terminal Conversion Unit.

New!

SYSMAC

 Programmable Controllers

omron

Packed with ideal functions for machine control.

OMRON Corporation

FA Systems Division H.Q.
66 Matsumot
Mishima-city, Shizuoka 411-851 Teli: $(81) 55-977-9181$
Fax: $88155-977-9045$

Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31) $2356-81-300 /$ Fax: (31))2356-81-388 OMRON ELECTRONICS LLC 1 East Commerce Drive, Schaumburg, IL 60173
U.E.S.A. Commerce Drive, Schaumburg, IL 601
Tel: (1) $847-843-7900$ Fax: (1) $847-843-8568$
. OMRON ASIA PACIFIC PTE. LTD. 83 Clemenceau Avenue,
$\# 11-01$
UN S Sure \#31-101, UE S Suare,
Singapore 239920
Tel: ((65) $6835-3011$ /Fax: (65) $6835-2711$

Past Small| Seamless! Ihe C.JI Series has expanded tomeet the reguifements of compact and generalpurpose devices and to support the downsizing of machinery with greater added value.

和 MORE COMPACT

Built-in Positioning Functions
Lineup includes CPU Unit with built-in pulse input/output functions. This CPU Unit can be used for simple positioning, allowing further downsizing.

- Pulse output function: $100 \mathrm{kHz}, 2$ axe
-Counter function: Phase differential, Counter function: Phase differential,
50 kHz 2 Z axes

Single phase | Single phase, 100 kHz |
| :--- |
| 2 axes | -These functions can be used at th These functio

same time.

CJ1M-CPU22 (10 Ksteps) CJ1M-CPU23 (20 Ksteps)

MORE FLEXIBLE

Combining Units with Greater Efficiency

The CJ1M does not require a backplane, allowing Units to be combined flexibly. Despite not having a backplane, it is still possible to leave words empty for future expansion.

- Systems can be expanded to include more I/O without making any changes to existing I/O word allocations.

Empty words can be set using CX-Programmer. using CX-Program

 Words in the I/O Area can be left empty
to alow Units to be added here in the
future

Choose the Units to suit the application.

Maintenance improved using Memory Cards (compact flash cards).

Memory Cards make it easy to change programs.

Using compact flash cards allows programs to be changed by email as well as post.
Example of Memory Card Application

Programs can be written to a compact flash card without a PLC being present. The cards can be used with PC card slots, which are built into most laptop computers, and so special peripheral devices are not required.

Logging possible for production conditions and inspection data.
A computer is not required at the production site, enabling downsizing and cost reductions.

Serial PLC Link Function
Supported by the CJ1M CPU Unit's built-in RS-232C Board. Serial PLC Links can be used for exclusive control between loaders and unloaders in substrate transfer equipment and for the exchange of temperatures and times between conveyor ovens.

Data can be exchanged via Serial PLC Links involving up to nine CJIM PLCS using the built-in RS-232C Boards. Up to ten words per PLC can be allocated to
the Serial LLC Links. RS-232C can be converted to RS-422A easily using a C CIWW-CIF11 RS-422A Converter.

Cam switch control is easy with ladder instructions. CJM1 instruction The BCMP (UNSIGNED BLOCK COMPARE) instruction can also be used for angle comparisons and comparison data settings that straddle 0 (BCMP2).

CJ1M/CJ-series Lineup

omron

Connections to Programming Devices

CJ1M CPU Units

CJ1M-CPU12/13
 CJ1M-CPU22/23

CPU Units

Model	Number of I/O points	Maximum number of Expansion Racks	Maximum number of connectable Units	Program capacity	Data memory capacity	LD instruction processing speed	Built-in ports	Mountable options	Built-in I/O
CJ1M-CPU12	320	None	10 Units	10 Ksteps	32 Kwords (DM only, no EM)	100 ns	Peripheral port and RS232C port	Memory Card (compact flash)	None
CJ1M-CPU13	640	1 Unit	CPU Rack: 10 Units Expansion Rack: 10 Units	20 Ksteps					
CJ1M-CPU22	320	None	10 Units	10 Ksteps					10 inputs and 6 outputs
CJ1M-CPU23	640	1 Unit	CPU Rack: 10 Units Expansion Rack: 10 Units	20 Ksteps					Inputs: 4 interrupt inputs (pulse catch); 2 highspeed counter inputs (Phase differential: 50 kHz ; Single phase: 100 kHz) Outputs: 2 pulse outputs (2 points for positioning, $100-\mathrm{kHz}$ speed control, and PWM output)

Dimensions

CPU Unit

Weight: 120 g

Weight: 170 g

End Plate
(Provided with the CPU Unit.)

RS-422A Converter
CJ1W-CIF11

omron

Unit Dimensions

Power Supply Units

8/16-point Basic I/O Units

Width W (mm) When Used with a CJ1WPA202 Power Supply Unit (AC, 14 W)

Number of I/O Units with 31-mm width	CJ1M-CPU12/13	CJ1M-CPU22/23
1	121.7	139.7
2	152.7	170.7
3	183.7	201.7
4	214.7	232.7
5	245.7	263.7
6	276.7	294.7
7	307.7	325.7
8	338.7	356.7
9	369.7	387.7
10	400.7	418.7

32-point I/O Units

64-point Basic I/O Units

I/O Units with $20-\mathrm{mm}$ width:

- 32-point Basic I/O Units - CompoBus/S Master Units I/O Units with 31 -mm width:
- Basic I/O Units other than the above

Special I/O Units
CPU Bus Units

Current Consumption

CPU Unit Current Consumption

Model	Current consumption at 5 V	Current consumption at 24 V
CJ1M-CPU12/ CPU13	0.58 A	-
CJ1M-CPU22/ CPU23	0.64 A	-

Power Supply Unit Capacity

Model		Current consumption at 5 V	Current consumption at 24 V
CJ1W-PA202	Maximum current output	2.8 A	0.4 A
	Maximum power output	14 W	
CJ1W-PA205R	Maximum current output	5.0 A	0.8 A
	Maximum power output	25 W	
CJ1W-PD025	Maximum current output	5.0 A	0.8 A
	Maximum power output	25 W	

Calculation Example for Power and Current Consumption

The configuration in this example is possible with the CJ1W-PA202 Power Supply Unit (14 W).

Model	Specification	Current consumption at 5 V	Current consumption at 24 V
CJ1W-CPU23	CPU Unit	0.64 A	-
CJ1W-CIF11	RS-422A Converter	0.04 A	-
CJ1W-ID211	16-point DC Input Unit	0.08 A	-
CJ1W-ID261	64-point DC Input Unit	0.09 A	-
CJ1W-OC211	16-point Relay Output Unit	0.11 A	0.096 A
CJ1W-OD211	16-point Relay Output Unit	0.10 A	-
CJ1W-OD261	64-point Transis- tor Output Unit	0.17 A	-
CJ1W-AD08-V1	8-point Analog Input Unit	0.42 A	-
CJ1W-NC413	4-axis Position Control Unit	0.36 A	-
Total current consumption	2.01 A	0.096 A	
Total power consumption	12.35 W		

Common Specifications

omron

Item	Specification	
Internal I/O Area (work bits)	4,800 (300 words): CIO 120000 to CIO 149915 (words CIO 1200 to CIO 1499) 37,504 (2,344 words): CIO 380000 to CIO 614315 (words CIO 3800 to CIO 6143) These bits in the CIO Area are used as work bits in programming to control program execution. They cannot be used for external I/O.	These bits can be used as work bits when not used for the applications described on the left.
Work Area	8,192 (512 words): W00000 to W51115 (words W000 to W511) These bits are used as work bits in programming to control program execution. They cannot be used for external I/O. Note: When using work bits in programming, use bits in the Work Area first before using bits from other areas.	
Holding Area	8,192 (512 words): H00000 to H51115 (words H000 to H511) Holding bits are used to control program execution, and maintain their ON/OFF status when PLC is turned OFF or the operating mode is changed.	
Auxiliary Area	Read-only: 7,168 (448 words): A00000 to A44715 (words A000 to A447) Read/write: 8,192 bits (512 words): A44800 to A95915 (words A448 to A959) Auxiliary bits are allocated specific functions.	
Temporary Area	16 bits (TR0 to TR15) Temporary bits are used to store ON/OFF execution conditions at program branches.	
Timer Area	4,096: T0000 to T4095 (used for timers only)	
Counter Area	4,096: C0000 to C4095 (used for counters only)	
DM Area	32 Kwords: D00000 to D32767 Special I/O Unit DM Area: D20000 to D29599 (100 words $\times 96$ Units). Used to set parameters for Special I/O Units. CPU Bus Unit DM Area: D30000 to D31599 (100 words $\times 16$ Units). Used to set parameters for CPU Bus Units.	Used as a generalpurpose data area for reading and writing data in word units (16 bits).
Index Registers	IR0 to IR15 Store PLC memory addresses for indirect addressing.	Area maintain their status when the PLC is turned OFF or the operating mode is changed.
Task Flag Area	32 (TK0000 to TK0031) Task Flags are read-only flags that are ON when the corresponding cyclic task is being when the corresponding task is not being executed or is in standby status.	executed and OFF
Trace Memory	4,000 words (trace data: 31 bits, 6 words)	
File Memory	Memory Cards: OMRON Memory Cards with 8-MB, 15-MB, $30-\mathrm{MB}$, or $48-\mathrm{MB}$ capacitie DOS format).	s can be used. (MS-

Function Specifications

Item	Specification
Constant cycle time	Possible: 1 to $32,000 \mathrm{~ms}$ (unit: 1 ms)
Cycle time monitoring	Possible (Unit stops operating if cycle is too long): 10 to $40,000 \mathrm{~ms}$ (unit: 10 ms)
I/O refreshing	Cyclic refreshing, immediate refreshing, refreshing by IORF(097). The CPU BUS UNIT I/O REFRESH (DLNK) instruction can be used to refresh CPU Bus Units (including allocated CIO and DM Area words) when required in the program.
Special refreshing for CPU Bus Units	Data links for Control Link Units, remote I/O communications for DeviceNet Units, and other special data for CPU Bus Units are refreshed at the following times. During I/O refresh period or when CPU BUS UNIT I/O REFRESH (DLNK) instruction is executed.
l/O memory holding when changing operating modes	Possible (using the IOM Hold Bit in the Auxiliary Area)
Load OFF	All outputs from Output Units can be turned OFF when the CPU Unit is in RUN, MONITOR, or PROGRAM mode.
Input time constant setting	Time constants can be set for inputs from CJ-series Basic I/O Units. The time constant can be increased to reduce influence of noise and chattering or it can be decreased to detect shorter pulses on inputs.
Operating mode setting at power-up	Possible (By default, the CPU Unit will start in RUN mode if a Programming Console is not connected.)
Built-in flash memory	User program and parameter areas (e.g., PC Setup) are automatically backed up and restored.

Item	Specification	
Memory Card functions	Automatically reading programs (autoboot) from the Memory Car when the power is turned ON.	Possible
	Program replacement during PLC operation	Possible
	Memory Card storage data	User program: Program file format PC Setup and other parameters: Data file format I/O memory: Data file format (binary), text format, CSV format CPU Bus Unit data: Special format
	Memory Card read/write method	User program instructions, Programming Devices (including CX-Programmer and Programming Console), Host Link computers, AR Area control bits, easy backup operation
Filing	Memory Card data can be handled as files.	
Debugging	Force-set/reset, differential monitoring, data tracing (scheduled, each cycle, or when instruction is executed)	
Online editing	One or more program blocks in user programs can be overwritten when CPU Unit is in PROGRAM or MONITOR mode. This function is not supported for block program areas. With the CX-Programmer, more than one program circuit can be edited at the same time.	
Program protection	Overwrite protection: Set using DIP switch. Copy protection: Password set using CX-Programmer.	
Error check	User-defined errors (i.e., user can define fatal errors and non-fatal errors) The FPD(269) instruction can be used to check execution time and logic of each programming circuit. Error status can be simulated with the FAL and FALS instructions.	
Error log	Up to 20 errors are stored in error log. Information includes error code, error details, and time error occurred. It is possible to set whether or not FAL errors are stored in the error log.	
Serial communications	Built-in peripheral port: Programming Device (e.g., CX-Programmer or Programming Console), Host Links, NT Links Built-in RS-232C port: Programming Device (e.g., CX-Programmer), Host Links, no-protocol communications, NT Links, Serial PLC Links	
	Serial Communications Unit (sold separately): Protocol macros, Host Links, NT Links	
Clock	Provided on all models. Accuracy: $\pm 1.5 \mathrm{~min} / \mathrm{mo}$. at $25^{\circ} \mathrm{C}$. Note: 1. The accuracy varies with the temperature. 2. Used to store time when power is turned ON and when errors occur.	
Power OFF detection time	10 to 25 ms (not fixed)	
Power OFF detection delay time	0 to 10 ms (user-defined, default: 0 ms)	
Memory protection	Held areas: User program, holding bits, Data Memory, and status of counter Completion Flags and present values. Note: If the IOM Hold Bit in the Auxiliary Area is ON, and the PC Setup is set to maintain the IOM Hold Bit status when power is turned ON, the contents of the CIO Area, Work Area, part of the Auxiliary Area, timer Completion Flags and PVs, Index Registers, and Data Registers will be saved.	
Sending commands to a Host Link computer	FINS commands can be sent to a computer connected via Host Link System by executing Network Communications Instructions from PLC.	
Remote programming and monitoring	Host Link communications can be used for remote programming and remote monitoring through a Controller Link System or Ethernet network.	
Three-level communications	Host Link communications can be used for remote programming and remote monitoring from devices on networks up to two levels away (Controller Link Network, Ethernet Network, or other network).	
Storing comments in CPU Unit	I/O comments can be stored in Memory Cards.	
Program check	Program checks are performed for items such as no END instruction and instruction errors. CX-Programmer can also be used to check programs.	
Control output signals	RUN output: The internal contacts will turn ON (close) while the CPU Unit is operating. (Possible only with CJ1WPA205R Power Supply Unit.)	
Battery life	5 years at $25^{\circ} \mathrm{C}$ (The battery life depends on the ambient operating temperature; 0.75 year min.) (Battery Set: CJ1W-BAT01) Note: Use a replacement battery for which no more than 2 years have expired since the date of manufacture.	
Self-diagnostics	CPU errors (watchdog timer), I/O bus errors, memory errors, and battery errors	
Other functions	Storage of the number of times power has been interrupted. (Stored in A514.)	

OmROn

CJ1M-CPU22/23 Specifications

Built-in I/O Allocation Areas

1/0 point			INO	IN1	IN2	IN3	IN4	IN5	IN6	IN7	IN8	IN9	OUT1	OUT2	OUT3	OUT4	OUT5	OUT6
		Word	2960										2961					
		Bit	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5
Input		Gener-al-purpose input	Generalpurpose input 0	Generalpurpose input 1	Generalpurpose input 2	Generalpurpose input 3	Generalpurpose input 4	Generalpurpose input 5	Generalpurpose input 6	Generalpurpose input 7	Generalpurpose input 8	Generalpurpose input 9	-	-	-	-	-	-
		Interrupt input	Interrupt input 0	Interrupt input 1	Interrupt input 2	$\begin{aligned} & \text { Interrupt } \\ & \text { input } 3 \end{aligned}$	-	-	-	-	-	-	-	-	-	-	-	-
		Quick-response input	Quick-response input 0	Quick-response input 1	Quick-response input	Quick-response input 3	-	-	-	-	-	-	-	-	-	-	-	-
			-	-	Highspeed counter input 1 (phaseZ or reset	Highspeed counter input 0 (phase Z or reset	-	-	Highspeed counter (phase A incremental, input)	Highspeed counter input 1 (phase B decremental, or direction in put)		Highspeed counter input 0 (phase B mental, or direction in put)	-	-	-	-	-	-
Output	General-purpose output		-	-	-	-	-	-	-	-	-	-	Generalpurpose output 0	Generalpurpose output 1	Generalpurpose output 2	Generalpurpose output 3	Generalpurpose output 4	Generalpurpose output 5
	Pulse output	$\begin{aligned} & \text { CW/ } \\ & \text { CCW } \end{aligned}$	-	-	-	-	-	-	-	-	-	-	Pulse output 0 (CW)	Pulse output 0 (CCW)	Pulse output 1 (CW)	Pulse output 1 (CCW)	-	-
		Pulse + direction	-	-	-	-	-	-	-	-	-	-	Pulse output 0 (pulse)	Pulse output 1 (pulse)	Pulse output 0 (direction)	Pulse output 1 (direction)	-	-
		Pulse with variable duty factor (PWM) output	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PWM output 0	PWM output 1
Origin search			Origin search 0 (origin input signal)	Origin search 0 (origin proximity input signal)	Origin search 1 (origin input signal)	Origin search 1 (origin proximity input signal)	Origin search 0 (positioning comple- tion signal)	Origin search 1 (positioning complenal)	-	-	-	-	-	-	-	-	Origin search 0 (error counter reset output)	Origin search 1 (error counter reset output)

Built-in Input Specifications

Interrupt Inputs and Quick-response Inputs

Item		
Number of interrupt and quick-re- sponse input points	4 total	
Interrupt inputs	Interrupt in- put mode	At the rising or falling edge of the input signal, the CPU Unit's cyclic program is interrupted and the corre- sponding I/O interrupt task (task number 140 to 143) is executed. The response time (i.e., the time from the input condition being satisfied until execution of the interrupt task) is $93 \mu \mathrm{~s} \mathrm{min}$.
	Counter mode	The number of rising or falling edges of the input signal are counted incrementally or decrementally, and when the count has been reached, the corresponding interrupt task (task number 140 to 143) is executed. The input response frequency is 1 kHz.
	Signals less than the cycle time $(30 \mu \mathrm{~s}$ min.) can be treated as ON signals for one cycle.	

High-speed Counter Input

Item	Specification			
Number of high-speed counter inputs	2 (high-speed counters 0 and 1)			
Counter modes (set in the PC Setup)	Phase differential inputs (phase-A, -B, and -Z in- puts)	Up and down pulse in- puts (incremental pulse, decremental pulse, and reset inputs)	Pulse + direction inputs (pulse, direction, and re- set inputs)	lncremental pulse input (incremental pulse and reset inputs)
Response frequency	Line driver input	50 kHz	100 kHz	100 kHz
24-VDC input	30 kHz	60 kHz	60 kHz	60 kHz
Counter type	Linear counter or circular counter (set in the PC Setup)			
Counting range	Linear counter: 80000000 to 7FFF FFFF Hex Circular counter: 0000 000 to circular counter set value (The circular counter set value is set in the PC Setup in the range 0000 0001 to FFFF FFFF Hex.)			
High-speed counter present value stor- age words	High-speed counter 0: A270 (lower digits) and A271 (upper digits) High-speed counter 1: A272 (lower digits) and A273 (upper digits) Target value comparison inputs and range comparison inputs are possible for these values. Note: The present values are updated each cycle as part of common processing. Use the PRV in- struction to read the latest value.			
Control method	Target value comparison	Up to 48 target values and interrupt task numbers can be registered.		
Range comparison	Up to 8 upper limits, lower limits, and interrupt task numbers can be registered.			
Counter reset method	Z-phase signal + software reset: Counter reset when the Z-phase input is turned ON with the reset bit (see below) ON. Software reset: Counter reset when the reset bit (see below) turns ON. Reset bit: A531, bit 00 (high-speed counter 0); A531, bit 01 (high-speed counter 1)			

Built-in Output Specifications

Positioning and Speed Control Functions

Item	Specification
Output frequency	1 Hz to $100 \mathrm{kHz}(1$ to $100 \mathrm{~Hz}: 1-\mathrm{Hz}$ units; 100 Hz to 4 kHz : 10-Hz units; 4 to $100 \mathrm{kHz}: 100-\mathrm{Hz}$ units)
Frequency acceleration/ deceleration rate	1 Hz to 2 kHz (every 4 ms), set in $1-\mathrm{Hz}$ units Acceleration and deceleration for the PLS2 instruction can be set individually.
Changing set values during instruction execution	The target frequency, acceleration/deceleration rate, and target position can be changed. The target frequency and acceleration/deceleration rate can only be changed for positioning at a constant speed.
Pulse output method	CW/CCW or pulse + direction
Number of output pulses	Relative coordinate specifications: 0000 0000 to 7FFF FFFF Hex (2,147,483,647 in either incremental or decremen- tal direction) Absolute coordinate specifications: 8000 0000 to 7FFF FFFF Hex ($-2,147,483,648$ to 2,147,483,647)
Instruction for origin search/reset	ORG (ORIGIN SEARCH): Used to perform origin searches or origin resets according to set parameters.
Instructions for positioning and speed control	PLS2 (PULSE OUTPUT): Used to output pulses for trapezoidal positioning with individually set acceleration and de- celeration rates. PULS (SET PULSES): Used to set the number of output pulses. SPED (SPEED OUTPUT): Used to output pulses without acceleration or deceleration. (The number of pulses must be set beforehand using the PULS instruction to perform positioning.) ACC (ACCELERATION CONTROL): Used to control the acceleration/deceleration rate. INI (MODE CONTROL): Used to stop pulse output.
Pulse output present value storage area	AR Area Words Pulse output 0: A276 (lower 4 digits) and A277 (upper 4 digits) Pulse output 1: A278 (lower 4 digits) and A279 (upper 4 digits) The present values are updated each cycle as part of overhead processing. The pulse output present value can be read to specified words using PRV (HIGH-SPEED COUNTER PV READ).

omROn

Pulse with Variable Duty Factor (PWM) Output Function

Item	
Duty ratio	0% to 100%, set in 1% units
Frequency	0.1 to 999.9 Hz , set in $0.1-\mathrm{Hz}$ units
Instruction for PWM	PWM (PULSE WITH VARIABLE DUTY FACTOR): Used to output pulses with the specified duty factor.

Hardware Specifications

Input Specifications

Circuit Configuration

General-purpose Output

Specifications: Transistor Outputs (Sinking)

Outputs	OUT0 to OUT3	OUT4 to OUT5
Rated voltage	5 to 24 VDC	
Allowable voltage range	4.75 to 26.4 V	
Maximum switch- ing current	0.3 A per point, 1.8 A per Unit	
Outputs per com- mon	6 points	
Maximum inrush current	3.0 A per point for 10 ms max.	
Leakage current	0.1 mA max.	
Residual voltage	0.6 V max.	
ON response time	$0.1 \mathrm{~ms} \mathrm{max}$.	
OFF response time	$0.1 \mathrm{~ms} \mathrm{max}$.	
Fuse	None	

External power supply	10.2 to $26.4 \mathrm{VDC}, 50 \mathrm{~mA} \mathrm{~min}$.	
Circuit configuration		

Pulse Output Specifications (OUTO to OUT3)

Item	Specification
Maximum switch- ing capacity	$30 \mathrm{~mA}, 4.75$ to 26.4 VDC
Minimum switch- ing capacity	$30 \mathrm{~mA}, 4.75 \mathrm{to} 26.4 \mathrm{VDC}$
Maximum output frequency	100 kHz
Output waveform	OFF 90%

